On the second Feng-Rao distance of Algebraic Geometry codes related to Arf semigroups
نویسندگان
چکیده
We describe the second (generalized) Feng-Rao distance for elements in an Arf numerical semigroup that are greater than or equal to the conductor of the semigroup. This provides a lower bound for the second Hamming weight for one point AG codes. In particular, we can obtain the second Feng-Rao distance for the codes defined by asymptotically good towers of function fields whose Weierstrass semigroups are inductive. In addition, we compute the second Feng-Rao number, and provide some examples and comparisons with previous results on this topic. These calculations rely on Apéry sets, and thus several results concerning Apéry sets of Arf semigroups are presented.
منابع مشابه
On the parameters of Algebraic Geometry codes related to Arf semigroups
In this paper we compute the order (or Feng-Rao) bound on the minimum distance of one-point algebraic geometry codes CΩ(P, ρlQ), when the Weierstrass semigroup at the point Q is an Arf semigroup. The results developed to that purpose also provide the dimension of the improved geometric Goppa codes related to these CΩ(P, ρlQ).
متن کاملOn numerical semigroups and the redundancy of improved codes correcting generic errors
We introduce a new sequence τ associated to a numerical semigroup similar to the ν sequence used to define the order bound on the minimum distance and to describe the Feng–Rao improved codes. The new sequence allows a nice description of the optimal one-point codes correcting generic errors and to compare them with standard codes and with the Feng–Rao improved codes. The relation between the τ ...
متن کاملSome algorithms for computing the minimum distance of evaluation codes
Our purpose is to present some computations and estimates for the minimum distance of some families of evaluation codes. We introduce the Feng-Rao distance of an algebraic-geometry code and its extension to codes from order domains. Finally we give an algorithm to compute the Feng-Rao distance of a code from an order domain and we show its implementation in the computer algebra system SINGULAR.
متن کاملOn Semigroups Generated by Two Consecutive Integers and Hermitian Codes
Analysis of the Berlekamp-Massey-Sakata algorithm for decoding onepoint codes leads to two methods for improving code rate. One method, due to Feng and Rao, removes parity checks that may be recovered by their majority voting algorithm. The second method is to design the code to correct only those error vectors of a given weight that are also geometrically generic. In this work, formulae are gi...
متن کاملA note on the order bound on the minimum distance of AG codes and acute semigroups
We extend some results of Bras-Amorós concerning the order bound on the minimum distance of algebraic geometry codes related to acute semigroups. In particular we introduce a new family of semigroups, the so called near-acute semigroups, for which similar properties hold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1702.08225 شماره
صفحات -
تاریخ انتشار 2017